
A MOMENT-BASED WEIGHTED BLOCK SPARSE BAYESIAN LEARNING APPROACH FOR
SIMULTANEOUS DUAL-LAYER LUNG ELECTRICAL IMPEDANCE TOMOGRAPHY

Christos Dimas, Vassilis Alimisis, Nikolaos Uzunoglu and Paul P. Sotiriadis

National Technical University of Athens

ABSTRACT

Electrical impedance tomography (EIT) has emerged as a
non-invasive, fast, and safe medical technique for real-time
thoracic imaging. However, EIT is typically conducted in
a 2D fashion, often lacking crucial structural information
associated with the z-axis direction. Furthermore, 3D EIT
incurs high computational costs, rendering it impractical for
real-time monitoring, while EIT reconstruction is an ill-posed
and nonlinear problem. In this paper, a weighted block sparse
Bayesian learning and an efficient method-of-moment ap-
proach are combined to simultaneously conduct lung EIT in
2 distinct z-planes, each one defined by 16 electrodes. There-
fore, the inverse problem’s non-linearity is reduced, robust-
ness to noise and modeling errors is improved, while z-axis
information is obtained, avoiding the 3D case complexity. Re-
constructions based on simulated human thoracic structures
and on horse subject thoracic data demonstrate improvement
spatial resolution with limited presence of artefacts compared
to the linear method-of-moment reconstruction.

Index Terms— Electrical impedance tomography, lung,
moment, sparse Bayesian learning, electrode layer.

1. INTRODUCTION

Electrical impedance tomography (EIT) is an imaging modal-
ity, which applies medium-frequency currents through skin-
mounted electrodes and subsequent voltage measurements
[1]. The acquired voltages undergo digital signal process-
ing, enabling the reconstruction of the subject’s conductivity
distribution. EIT offers several advantages, including non-
invasiveness, absence of radiation exposure, portability and
high temporal resolution. However, its spatial resolution is
limited due to the ill-conditioning and non-linearity of the
occuring inverse problem. EIT is applied in diverse areas,
including lung and cardiac monitoring [2], tumor detection
[3], brain imaging and non-destructive evaluation.

The field of EIT imaging remains a focal point of re-
search. Earlier approaches assumed a linear relationship
between conductivity and electrode voltages, incorporating
this concept into back-projection or Tikhonov regularization
schemes [4]. Later, iterative non-linear Gauss-Newton (l2-
norm), total variation (l1-norm) [5] and shape-driven methods

were adopted. Recently, machine learning approaches have
been introduced in EIT, including supervised neural network
model-based [6], [7] and non-supervised ones [8]. Despite
the improvements made in spatial, temporal resolution and
robustness, major challenges remain in obtaining multidi-
mensional structural and functional information efficiently.

This work combines a recently proposed point-matching
method-of-moment (MoM) [9], [10], with a weighted block
sparse Bayesian learning (WBSBL) approach [11] to perform
2-layer dynamic thoracic impedance imaging. The MoM for-
mulates a system matrix using a Green integral equation, in-
volving radial basis functions (RBFs) to express the logarithm
of conductivity, reducing the problem’s non-linearity and of-
fering fast image reconstruction. At the same time, WBSBL
assumes that conductivity perturbations are sparse and block
contained in a number of clusters, with each one incorporat-
ing a self-trained hyperparameter [8], [12]. WBSBL is per-
formed by exploiting structure aware priors and using the
bound-optimization method with a weighted Gamma distri-
bution prior [11]. It is characterized by improved stability and
low sensitivity to noise. The proposed combination is evalu-
ated on simulated human thoracic structures and real animal
data, by stimulating 2 planes of a total of 32 electrodes. The
resulting images sucessfully reveal the impedance changes
due to the breathing process demonstrating significant arte-
fact removal compared with the linear MoM approach.

The rest of this paper is organized as follows. Section
2 revises the MoM adopted, while section 3 describes the
adaption of MoM to WBSBL, according to a 2-layer elec-
trode scheme. In addition, section 4 describes the evaluation
structures and presents the qualitative and quantitative results.
Finally, section 5 draws the conclusion.

2. METHOD OF MOMENT

Assume a N -electrode EIT setup, tested within a n-dimensional
domain Ω (n = {2, 3}) where the electrodes are located at
the points {em}N1 that lie very close to ∂Ω. An electrostatic
description of the EIT problem can be expressed from the fol-
lowing Poisson equation and Neumann boundary condition:

∇
(
σ(r)∇U(r; r+, r−)

)
= Ik

(
δ(r − r+)− δ(r − r−)

)
, (1)

U(r; r+, r−)v = 0, (2)
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for any observation point r ∈ Ω. The current I is injected
on the electrodes r+, r− ∈ {em}N1 , σ(r) denotes the rela-
tive conductivity, U the voltage, k = 1/mn is a constant, δ
the Dirac delta function and v is the normal outward-pointing
vector. The Green function G(r, r′) is also defined:

∇2G(r, r′) = −δ(r − r′) , r, r′ ∈ Ω (3)

with the following boundary condition:

G(r, r′)v = −1/S , r ∈ Ω, r′ ∈ ∂Ω, (4)

where S is the ∂Ω perimeter. Using (1)-(4) and the Green’s
second identity the following integral equation is derived [9]:

U(r; r+, r−)=

∫
Ω

G(r, r′)∇
(
lnσ(r′)

)
·∇Uo(r

′; r+, r−)dA

+Uo(r; r+, r−),

(5)

where Uo denotes the homogeneous case voltage. After
the domain Ω discretization at L subdomains (pixels/voxels),
lnσ(r′) can be expressed in a RBF manner:

lnσ(r′) = ln(σo) +

L∑
j=1

cj exp

(
−
∥r′ − rj∥22

2D2

)
(6)

where {cj}N1 are real constants and σo the background rela-
tive conductivity.

Substitution of (6) in (5) and discretization of the integral
equation in a vectorized form, considering the current injec-
tion pattern and the voltage electrode measurements’ sequen-
cies, the following linear equation system is formed [9]:

Mc = Ũ , (7)

where M ∈ R(Nh)×L is the system matrix, c ∈ RL×1 the
unknown coefficient vector and Ũ ∈ R(Nh)×1 the estimated
electrode voltages (h is the number of voltage measurements
obtained during the stimulation of a current electrode pair).

Assume the following noise model:

V = Mc+ n, (8)

where V ∈ R(Nh)×1 denotes the EIT system measure-
ments vector and n ∈ R(Nh)×1 the Gaussian measurement
noise. Considering that the occuring inverse problem is ill-
conditioned and in order to avoid overfitting, the following
minimization scheme is defined:

argmin
c∈RL

{
∥Mc− V ∥2W + α2R(c)

}
, (9)

where V ∈ R(Nh)×1 denotes the EIT system measurements
vector, W ∈ R(Nh)×(Nh) a weighting covariance matrix,
R(c) a regularization term and α the regularization hyper-
parameter. The coefficients c can be estimated using a variety
of l1 and l2-norm optimization algorithms, such as the gener-
alized Tikhonov regularization (GTR) and the total variation
(TV). Special attention should be given in the non-trivial pro-
cess of the hyperparameter λ selection which strongly affects
the result. The conductivity σ ∈ RL×1

+ is estimated using (6).

Assuming a 2 × 16-electrode setup, with the electrodes
located at z = z1 and z = z2 layers of the structure, the
following system matrix is formulated as follows:

M̃ =
[
M |z=z1M |z=z2

]
∈ R(Nh)×(L1+L2), (10)

where M corresponds to a 3D case matrix and L1, L2 corre-
spond to the number of pixels located within the 1st and the
2nd electrode layer respectively. Therefore, the problem (9) is
reformulated with the modified matrix M̃ , thereby reducing
the unknowns from L to L1+L2, while maintaining the same
number of measurements, Nh. The reconstruction is reduced
on the electrode layers where the electric field is denser [13].
This mitigates the soft-field effect, thereby improving the ill-
conditioning of the inverse problem. It is essential to note
that the reconstruction problem is not handled separately for
each layer, as their corresponding conductivity distribution is
influenced by all of the electrode measurements.

3. WEIGHTED SPARSE BAYESIAN LEARNING

The SBL framework assumes that c in the model (8) is sparse,
with each of the two layers consisting of g1 = L1−hs+1 and
g2 = L2 − hs +1 overlapping equally sized blocks (clusters)
of hs > 1 pixels. The minimization problem is modified as:

argmin
c∈RL1+L2

{
ln p(V |c) + λ ln p(c;Θ)

}
, (11)

where Θ = {λ}∪{γi,Bi}g1+g2
i=1 is a set of hyperparameters.

In particular, γi ∈ R+ and Bi ∈ Rhs×hs quantify the i-
th block’s sparsity and intra-correlation structure respectively.
To introduce the blocks’ structure, c is factorized as c = Ψx:

Ψ = [Ψ1, ...,Ψg1 , ...,Ψg1+g2 ] ∈ R(L1+L2)×(g1+g2)hs (12)

with Ψi ∈ R(L1+L2)×hs ,

Ψi=

{[
0T
(i−1)×hs

, Ihs×hs , 0
T
(L1−i−hs+1)×hs

]T
, i ≤ g1[

0T
(i+hs−2)×hs

, Ihs×hs , 0
T
(L1−i−2hs+2)×hs

]T
, i > g1

}
,

x = [x1
T , ...,xg1

T , ...,xg1+g2

T ]T ∈ R(g1+g2)hs×1 (13)
with xi ∈ Rhs×1 uncorrelated, x ∼ N (0,Σ0) and Σo =

diag{γ1B1, ..., γg1+g2Bg1+g2} ∈ R(g1+g2)hs×(g1+g2)hs .
The following matrices are also defined:

Φ = M̃Ψ ∈ R(Nh)×(g1+g2)hs and (14)

Σv = λI +ΦΣoΦ
T ∈ R(Nh)×(Nh). (15)

Therefore, the noise model (8) is written as:

V = Φx+ n. (16)

This work exploits the bound-optimization (BO) scheme,
which is described by a surrogate convex function [14]:

G(x,γ) =
1

λ
∥Φx− V ∥22 +

g1+g2∑
i=1

Tr
(
(Σ∗

v)
−1ΦiBiΦ

T
i

)
γi

+ xTΣo
−1x+ ln|Σ∗

v| −
g1+g2∑
i=1

Tr
(
(Σ∗

v)
−1ΦiBiΦ

T
i

)
γ∗
i ,

(17)
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where Φi ∈ R(Nh)×hs denotes the submatrix of Φ that
corresponds to the i-th block. Furthermore, γ∗ denotes a
given γ-space point, with Σ∗

v = Σv|γ=γ∗ . The BO ap-
proach provides improved convergence rate compared with
the expectation-minimization (EM) one.

Additionally to the BO SBL framework, a weighted prior
is introduced, where each γ−1

i obeys a Gamma distribution.
The weights of each block, denoted as wi ∈ [0, 1] and their
corresponding inverses w−1

i constitute the distribution’s pa-
rameters. Therefore, according to the type-II maximum like-
lihood formulation, the objective function is written as:

H(x,γ) = G(x,γ) + 2

g1+g2∑
i=1

wi

γi
+ 2

g1+g2∑
i=1

ln(γi)

wi
. (18)

The posterior mean values µx ∈ R(g1+g2)hs×1 and covari-
ance matrix Σx ∈ R(g1+g2)hs×(g1+g2)hs of the blocks x can
be estimated through an iterative minimization process of
(18). Within each iteration their updates are given by:

µx = ΣoΦ
TΣv

−1V and (19)

Σx = Σo −ΣoΦ
TΣv

−1ΦΣo. (20)

The learning rule for each hyperparameter is derived by dif-
ferentiation of (18). In particular, the γ rule can be reduced
to the inverse positive solution of a 2-nd order equation:

γi =
Ai + 2wi

1
wi

+
√

1
w2

i
+Bi(A+ 2wi)

, (21)

where Ai = µT
x,iBi

−1µx,i and Bi = Tr
(
(Σ∗

v)
−1ΦiBiΦ

T
i

)
.

In addition, λ is updated through the following formula:

λ =
1

Nh

(
∥V −Φµx∥22 +

g1+g2∑
i=1

Tr
(
Σx

iΦT
i Φi

))
. (22)

The intra-block correlation matrix is updated by using an in-
termediate matrix:

B̃i
new

= B̃i +
1

γi

(
Σx,i + µx,iµ

T
x,i

)
. (23)

in order to avoid overfitting. The updated Bi is given by

Bi
new = Toeplitz

([
r0i , ..., r

h−1
i

])
, (24)

where ri = sign(r̃i) ·min{|r̃i|, 0.99}, (25)

r̃i = diag
(
B̃i, 1

)/
diag

(
B̃i

)
. (26)

Finally, the weights are initialized by performing a single-
step c estimation with NOSER l2-norm prior according to
MoM. Then each block’s weight can be estimated by:

wi =
1

hs

hs∑
j=1

|cij |, (27)

where ci ∈ Rhs×1 denotes the i-th block’s pixels’ coeffi-
cient values. All the weights are normalized between 0 and 1.
Fig. 1 depicts an example of the block structure and weight
extraction at a pixelized thoracic single-layer domain.

j={1,...hs}

c image

1st block

 2nd 
block

i-th block

wi= |ci
j|

hs

j=1
hs

1
Normalization

w map...
w1 w2 wg

Fig. 1. Weight extraction from a block structured layer.

4. EVALUATION AND RESULTS

To evaluate the proposed approach, both simulated struc-
tures and real animal data have been used. In specific, 2 3D
CT-based fine finite element (FE) adult male human thoracic
structures have been generated using NETGEN and MAT-
LAB software to simulate the electrode measurements. Each
model has a height of 30cm and comprises approximately 1
million tetrahedral elements and 180000 nodes. The models
incorporate lung cavities at full-inspiration (with a conduc-
tivity of 0.28S/m) and full-expiration (with a conductivity of
0.11S/m) breathing states, while the background conductivity
was set at 0.36S/m. In addition, minor differences in chest
and lung volumes between the 2 FE models were introduced
to simulate dynamic behavior during the breathing process.
The electrode layers were positioned at levels z1 = 12.8cm
and z2 = 17.3cm, comprising a total of 2 × 16 electrodes.
Furthermore, a square skip-4 current injection pattern was
acted to intensify the electric field strength within the space
between the electrode layers [15], [13]. Gaussian noise was
also added to the measurements, resulting to a mean SNR of
50dB. A represtative case FE model is depicted in Fig. 2.

To avoid inverse crime [16], the 2-layer image reconstruc-
tion was performed at 2 coarse 1086-pixel sliced domains,
exctracted from a 3D coarse voxelized structure at the elec-
trodes’ levels. Both single-step l2-norm NOSER prior MoM
and MoM-based WBSBL reconstructions were obtained (α =
4.5, D = 0.03, hs = 4, κmax = 5 iterations), with the
corresponding time-difference EIT images shown in Fig. 3.

Expiration-End Inspiration-End

Fig. 2. Example of a 3D FE thoracic model. The electrode
layers are also shown.
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.3
cm

PCC
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0.49 0.48
0.778
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Fig. 3. Results of the 2 CT-based simulated thoracic cases.

An observation of the images shows that the MoM-WBSBL
results demonstrate the breath-related conductivity changes
more clearly compared to the single-step MoM l2-norm one,
with elimination of the artefacts. To quantitatively evaluate
the images, the Pearson correlation coefficient (PCC) and
the relative reconstruction error (RRE) metrics are consid-
ered for each layer separately, defined as:

PCC =
Cov(σtrue,σ∗)

Std(σtrue)Std(σ∗)
and (28)

RRE = ∥σ∗ − σtrue∥2/∥σtrue∥2 (29)

respectively. σtrue denotes the corresponding layer’s ground
truth and σ∗ is the estimated σ. The σtrue maps were ob-
tained through an image registration process between the FE
model and the pixelized slices. The PCC and RRE obtained
for each case are also included in Fig. 3, demonstating an
overall improvement in both metrics.

Finally, qualitative evaluation has been performed using
real horse chest measurements at 2 electrode layers, online
available in the EIDORS libary [17], [18]. For the reconstruc-
tions, 2 elliptic slices, each one comprised of 843 pixels, are
utilized. Fig. 4 demonstrates half of a breathing cycle within
5 EIT imaging frames, where the air-flow impedance changes
are detected from both MoM with NOSER and WBSBL ap-
proaches. However, MoM WBSBL eliminates major artefacts
that could lead to misinterpretation of the images, providing
clearer data for functional post-imaging analysis.
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Fig. 4. EIT images based on horse lung data.

5. CONCLUSION

A 2-layer EIT reconstruction approach for lung monitoring
is proposed. It combines an efficient point-matching MoM
with a weighted prior SBL approach, which permits the self-
training of the hyperparameters, while image artefacts are sig-
nificantly reduced. Furthermore, z-axis structural and tempo-
ral information is acquired, avoiding the 3D case complexity.
Further research should be conducted in complexity improve-
ment and shape reconstruction enhancement.

Algorithm 1: MoM-based WBSBL for 2-layer EIT

1 Inputs: V , D α, hs, ϵmin, κmax.
2 Initialize: ϵ = 1, κ = 0, µx = 0, Σx=0, γ =

diag{I(g1+g2)×(g1+g2)},λ =

√√√√ 1

Nh− 1

Nh∑
j=1

|Vj − V |2,

Bi = Toeplitz
([
0.90, ..., 0.9hs−1

])
, Ψ,

Σo = diag{γ1B1, ..., γg1+g2Bg1+g2},
Φ = M̃Ψ, Σv = λI +ΦΣoΦ

T , B̃i = Bi.
3 Formulate the RBF in (6), M and M̃ using MoM.
4 Estimate an initial c by minimizing (9) using M̃ .
5 Estimate w using (27) and normalize at [0, 1].
6 While ϵ > ϵmin and κ ≤ κmax do:
7 Update µx and Σx using (19), (20).
8 Update λ using (22).
9 For i ∈ {1, ..., g1 + g2}:

10 Update γi using (21).
11 Update Bi using (23)-(26).
12 Update Σo and Σv using (15).
13 ϵ = ∥µx

new − µx
prev∥2/∥µx

new∥2, κ+ = 1.
14 Estimate c∗ = Ψµx and σ∗ using (6).
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